On Interval-Valued Fuzzy Metric Spaces
نویسندگان
چکیده
In this paper, following the ideas of (continuous) t-norm and interval numbers, a concept of (continuous) interval-valued t-norm is proposed. Based on the interval-valued fuzzy set and the continuous interval-valued t-norm, we propose a notion of interval-valued fuzzy metric space, which is a generalization of fuzzy metric space in the sense of George and Veeramani [Fuzzy Sets and Systems 64 (1994): 395-399]. Meanwhile, we show that each metric induces an interval-valued fuzzy metric in certain conditions. Finally, we define a Hausdorff topology on an interval-valued fuzzy metric space and generalize some well-known conclusions of general metric spaces.
منابع مشابه
SOME FIXED POINT THEOREMS FOR SINGLE AND MULTI VALUED MAPPINGS ON ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES
In the present paper, a partial order on a non- Archimedean fuzzymetric space under the Lukasiewicz t-norm is introduced and fixed point theoremsfor single and multivalued mappings are proved.
متن کامل(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...
متن کاملSystem of fuzzy fractional differential equations in generalized metric space
In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کاملCommon Fixed Point Results on Complex-Valued $S$-Metric Spaces
Banach's contraction principle has been improved and extensively studied on several generalized metric spaces. Recently, complex-valued $S$-metric spaces have been introduced and studied for this purpose. In this paper, we investigate some generalized fixed point results on a complete complex valued $S$-metric space. To do this, we prove some common fixed point (resp. fixed point) theorems usin...
متن کامل